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One of the fundamental methods for the study of wave processes in multicomponent media 
is the method ]presented in [i] in which a multicomponent medium is regarded as a homogeneous 
continuous medium with an equation of compressibility taking compressibility into account and 
in which the components of the medium are in an equilibrium state. In [2] the model presented 
in [i] was imp:roved by the introduction of nonlinear diagrams of dynamic and static compres- 
sion of a multicomponent medium, thereby making it possible to introduce a volume viscosity; 
also introduced and studied in [2] were the fundamental results obtained in the solution of 
problems relating to the propagation of waves in media with constant and variable viscosity. 
In [3] the results of experimental studies of spherical waves in frozen soils with various 
physicomechanical characteristics were given; it was shown that the wave parameters depend 
essentially on the characteristics of the soil in its unfrozen state. 

The study of wave processes in ice appears in [4-7, etc]. In [4] results of experimental 
studies are given based on the theory presented in [5]; these results are in the form of 
graphs showing the attenuation of the maximum value of the speed of ice particles as a func- 
tion of the distance of the particles from the point where shock loading is applied. 

On the basis of the experimental data in [6, 7] expressions were obtained describing 
the process of wave propagation in ice and an equation was given defining the behavior of ice 
as a viscoelastic medium. 

In the present paper, based on results presented in [2], we obtain a solution of the 
problem of propagation of a planar wave produced by nonstationary loading in a multicomponent 
medium. In this connection, we took, a viscous Component, ice, the compressibility equation 
for which we borrowed from [6]. The solution we obtained with the aid of a computer employed 
the method of characteristics, a method previously employed in [8] with nonviscous media 
and in [2] with media with volume viscosity. 

We consider the problem of propagation of a plane wave in a viscous multicomponent medi- 
um. We employ a model containing three components: liquid, solid, and ice. As was done in 
[2], under initial (atmospheric) pressure P0, we denote the volume content of ice, liquid, 
and solid components by ~i, specific volume by Vi0 , density by Pi0, sound speed in each com- 
ponent by ci0; finally, for the medium taken as a whole we denote its density by P0 and its 
specific volume by V 0. We employ subscript i = I for ice, i = 2 for the liquid component, 
and i = 3 for the solid component. When the pressure is p we denote the volume, density, 
and speed of sound in the components by Vi, Pi, and ci, respectively; we denote the density 
of the medium by p and its specific volume by V: 

3 

P0 = v--~ = ~Pio' ~ = i. (1) 
i=l i=l 

The liquid and solid components, under the influence of a load, are compressed in accordance 
with the Tate equation 

P - - P o  =-~--i ~ - -1  ,: (2) 

where i = 2, 2;; Xi are known constants. 

Compression of ice is determined from an equation given in [6], which, in our notation, 
may be written as follows: 

E--~ -+~=V~o n E s - - v ~  ~ + P - - P o  �9 (3) 
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Here E D and E S are the dynamic and static elasticity moduli; q is the coefficient of viscos- 
ity of ice. 

From Eq. (3) we obtain 

v~---~= ~ s  ED v~o n + " (4) 

Taking note of the fact that 

we have, 

3 
Po V ,~  V~ y= v--?= ~-- (5) 

i=i Vio' 

from Eqs. (2) and (4), 

V 'l P I~'i P - -  Po (P - -  Po ? -~ 

i=2 ~ PioCio 

( 6 )  

.Differentiating Eqs. (5) with respect to the time and substituting into it the values V 2 and 
Va, determined from Eq. (2), and the value of V I from Eq. (6), we obtain 

l+V~ 

Pi0ci0 

# % P, 

v-- 7 = - 9 (p) P + ~ - . ,  

9 (p) = e~ + I + -- 2 "~'--D 1 ~=2 k Pioc~o i oioCio 

= - -  i : ,  [ ~ ? '  + i E s - - t x z ( p - - p o - - E s  ). 

( 8 )  

or, finally, 

The basic equations of motion in the Lagrange variables r, t have the form 

ae aV = o, a~ i ap = 0 ,  ( 9 )  
ot a~ W + p-~ 0--7 

where ~ is the deformation, v is the speed of particles of the medium, p is the pressure, and 
P0 is the initial density of the medium. 

The closing Eq. (8) is transformed into 

o-taB + 9 (p) w~ = ,(p,n o, ~(p, ~)-- ~1(p, 8 + i). (I0) 

The system (9), (i0) is hyperbolic. In the (r, t)-plane there are three families of 
real characteristics r = r(t). The characteristic relations are as follows: 

~ / ~ p )  ap (p, 8) ~ " 1 dp -4- - - - - -  du = dt along the curves r = -I- ] / ~ ;  ( i  i )  

~?(P' 8)dt along the curves ; : O. (12)  

The boundary conditions at the initial section r = 0 and at the front of the wave [the 
precursor r = R(t) or t = T(r)] are as follows: 

/ ' 
p ( O , t ) =  Po+Prn e 'T ,  t ~ O  (O=const  > 0 ) ,  (13)  

[Po, t < O; 
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p - po = kpoV, v = -_ks for r = R(t) (14) 

(R is the speed of the precursor). 

To obtain the third relationship at the precursor front it is necessary to integrate 
Eq. (I0), discarding the right-hand side [2]. For r = R(t) 

cr f P -- Po --1-- 
8 = - - E D ( p - - p o ) +  ~i ~ 7 ~ + I  v ~ _ ~  . (15) 

i=2 k PioCio 

The viscosity coefficient n for ice, in accord with [6, 7], is given by the expression 

= A ( t  - -  T(r))2ta,~ ( 1 6 )  

where A is a known constant and t = T(r) is the equation of the precursor in the (r, t)- 
plane. 

Solution of the problem reduces to integration of system (9)~ (iO) subject to the boundary 
conditions (13) at the initial section and the conditions (14), (15) at the front of the wave. 

We introduce dimensionless variables p0 = p- P0, v 0 C0P~ ~), sO ED - -  = - -  ~ and dimensionless 
Lagrange variables Pm Pm Pm 

r~ ( v a ) - a  r , ,  t o = (~)-3t, where ~ = mffEs; ~ = A/ED; Co = ~/ED/P0. 
c o 

In these variables, Eqs. (9), (I0) have the form 

Oso/Ot o ~- Ov~ ~ = O; (17) 

Ovo/ot o + Op~ o = 0; ( 1 8 )  

aso/ato _ ~pO(pO)@olOtO = ,O(pO, so)h i t  ( 1 9 )  

[ I _ ~' ( ~ p o + l  , ~ ;  ( f , ~ ~  ~ T;.  + ~ - ~ = ~ - - f + ~  + 
Here q)o (po) _ ~ ai k PioC~o PioC~o ~=2 i PioC~o 

- i~-g7 / = ( to_  r~176 

We m a y  write boundary conditions (13)-(15) in dimensionless variables as follows: 

i (~tz)s. o 
pO (0, t o) = e - " ~ ,  t~ ~ O, (20) 

10,. t o < O; 

pO = _~ vo, vo = 2_ so, 
Co % (21) 

l,=~ L k ",o~,o 

for r ~ ffi R~ ~ [t o = T~176 

Characteristic relations (11), 

dpO+ ~ i d@ = 
V ~ ~ (~) 

(12) may be rewritten in the form 

I ,O~o~o(po,(po)~o) ~t ~ a,o~ r o = • ~ ,  

t dp o (po ~o~o (pO) 
q)O ) de ~  q~o (po, ~o) dt ~ along ~o __ O. 

The system of equations (17)-(19) with the boundary conditions (20), (21) was solved 
with the aid of a computer by the method of characteristics. In accord with [3, 7] we took 
P20 = 1000 kg/m a, P30 = 2660 kg/m 3, c20 = 1500 m/sec, ca0 = 5000 m/sec, Pm = 2"107 N/m2, 
E D = 101~ N/m:', E S = 25-10 s N/m 2, 0 = I sec, v = 4, (va) a ffi 10 s sec, ~2 = 7, ~3 ffi 4; a i were 
the following: az ffi 0.69, a2 = 0.01, a3 = 0.3 and ax = 0.6, aa = 0.i, as = 0.3 

The calculations show that a degeneracy of the viscosity coefficient ~ [see Eq. (16)] 
at the front of the wave leads to the result that a continuous wave of compression begins to 
propagate from the initial section at the instant of application of shock loading. Unlike 
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the result in [2], no shock wave is observed here. The speed of propagation of the compres- 
sion wave coincides with the speed of sound in the model of the medium without viscosity, the 
equation of compressibility of which is given by the expression (15): 

h =  Po ~ + . =  Pioeg (22) 

In Figs. 1-3 the dimensionless quantities p0, e0, v 0 are shown as functions of the di- 
mensionless variable t at various sections of the medium. Curves 1-6 correspond to distances 

= (0; 2; 6; i0; 14; 18).10 -8 , the solid curves give the pressure, deformation, and speed 
in the viscous medium with =z = 0.69, =2 = 0.01, =3 = 0.3, while the dashed curves are for 
=z = 0.6, =2 = 0.i, =3 = 0.3. 

It is evident from Figs. 1-3 and Eq. (22) that the pressure, deformation, and speed of 
the particles of the medium, as well as the speed of propagation of the wave, depend substan- 
tially on the content of various components in the medium. An increase in =l and, associated 
with it, a decrease in =2 in the medium subject to cooling leads to an increase in the speed 
of the wave and to a decrease in deformation in the medium, a point noted in [3], where this 
dependence was confirmed experimentally for a number of frozen soils. In this connection, 
the pressure in the medium increases insignificantly. 

Our basic aim in this paper is the construction of a model of a multicomponent medium 
with a variable coefficient of viscosity and the solution of the problem of propagation into 
this medium of a planar wave produced by nonstationary shock loading. The author's deter- 
mination of q as the coefficient of viscosity of ice, unlike the situation in [2] where the 
coefficient of viscosity characterizes the properties of a multicomponent medium in the 
large, follows from a comparison of the fundamental equation of compressibility of a visco- 
elastic medium, as expressed in [2], and the equation given in [6] resulting from a series 
of experiments, and characterizes the viscous properties of only one component (in this case, 
ice). In the general case, the coefficient of viscosity of a medium depends on various fac- 
tors: the porosity of the medium [2], the physicomechanical properties of its components, 
the form of and the time of the applied loading. Along with these factors, the compres- 
sibility and viscosity of frozen soils depend on the characteristics of the soils in the un- 
frozen state [3], as well as on the ice-water phase transition. One can state that the con- 
tribution from this last factor will differ in frozen soils of diverse structure. However, 
the effect of this phase transition (for lack of the necessary experimental data) is not con- 
sidered in the present paper; it is assumed that the coefficient q introduced here defines 
the viscous properties of the medium in the large. In this connection, Eq. (3) describing 
the behavior of ice under the action of a load enables us to apply the method presented in 
[2] to construct a model of a multicomponent medium and to obtain a set of equations describ- 
ing the process of wave propagation in this medium. 

We note, in conclusion, that the main effect caused by a degeneracy in the viscosity 
coefficient at the front of the wave is the instantaneous smearing-out of the shock wave in 
the medium (converting it into a continuous wave of compression). 
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STRAIN-HARDENING OF STEEL BY DYNAMIC UNIAXIAL TENSION 

A. G. Ivanov, A. I. Korshunov, 
A. M. Podurets, V. A. Ryzhanskii, 
and N. A. Yukina 

UDC 539.375.5 

As is well known, many structural materials are sensitive to loading history to some 
extent. One manifestation of such sensitivity is the strain-hardening of steel as a result 
of plastic deformation - so-called work-hardening. It was shown in [i] that work-hardening 
increases with an increase in strain rate. It was established in [2] that in the uniaxial 
tension of austenitic steel 12KhlSNIOT in different rate regimes, the mechanical properties 
of the steel are significantly affected by factors related to its loading history (particu- 
larly relaxation processes and dynamic work-hardening). 

The present study (a continuation of [2]) is devoted to examination of the changes in 
the physicomechanical properties of steel 12KhlSNIOT as a result of its dynamic tension. 

The material for our study was taken from a cylindrical shell (outside radius R0, thick- 
ness 0.0246R0, length 4R0) welded from steel plates which were quenched and cooled in air. 
The shell was filled with water and was twice loaded by a spherical charge of high explosive 
(HE) detonated at the center. In each explosion, the charge itself was placed at the geomet- 
ric center of the shell. The tests were conducted in open air. The temperature of the wa- 
ter-filled shell in the tests was (293 • 5) K. The shell was deformed into a box shape as 
a result of the explosions. Measurement showed that the strains of the shell were close to 
uniaxial: with radial expansion, its considerable circumferential tension (about 40% in the 
central cross section) was accompanied by thinning and slight (maximum of about 3% in the 
same section) contraction along the generatrix. The results of high-speed photographs taken 
in the tests by the shadow method [3] showed that the shell pulsated slightly as it expanded 
(due to the action of compression waves circulated in the water, which is typical of under- 
water explosions [4]). 

The test specimens were cut in three shell regions located at different sites and, thus, 
characterized by different loading histories: in the region of the central cross section A, 
closest to the center of the explosion (where the strain rate was therefore the highest), 
the circumferential plastic strain e 0 was about 37%; in region B, located between region A 
and the edge of the shell, e0 ~ 17%; in region C at the edge of the shell, where the strain 
rate was lowest, e0 = 2%. The machining performed during cutting of the semifinished prod- 
ucts and preparation of the specimens was done in regimes which kept it from affecting the 
properties of the material. 
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